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From Space to Farm: Characterization of Small 
Farms Using Remote Sensing Data

Foreword

The Food and Agriculture Organization of the United Nations (FAO) believes that innovation, 
through which our most adventurous scientific endeavours can serve our most basic needs, 
is the central driving force for achieving a world free from hunger and malnutrition. FAO 
Director General, Mr QU Dongyu has highlighted innovation in agriculture as “a way to enhance 
effectiveness, competitiveness and resilience with limited land and resources”.

Remote sensing applications in agriculture are one such well-recognized innovation with ever 
expanding potential. They are used every day – from monitoring land use for crops, to assessing 
the condition of vegetation and soil, to measuring yields and spotting pests and diseases. They 
also have agrometeorological applications, and are used for analysis of forest vegetation and agro-
ecological zoning.

The greatest advantage of using remote sensing data is the ability to generate information across 
time and space which is essential for informed decision making. Use of remote sensing technology 
in agriculture involves a large amount of data, its analysis, interpretation and management. In 
the past three decades, much progress has been made in developing state-of-the-art analytical 
procedures and tools to process and interpret space-based remote sensing data and to combine it 
with ground-based measurements for agricultural applications. However, there is still larger need to 
invest in technological and human capital.

The EU-funded project on Small farms, small food businesses and sustainable food and nutrition 
security (SALSA) pioneered the development of innovative approaches, tools and procedures 
for using the latest satellite technologies, transdisciplinary approaches, food systems mapping 
and participatory foresight analysis. Most importantly, the project is replicable and scalable as 
it uses open source information and tools. In this booklet, we provide an interesting example 
of the application of analytical process for using satellite-based information for monitoring and 
assessment of crop types, crop area extent and crop production in small scale farming systems. 
We truly believe that this publication captures the extent of the opportunity for what modern 
technologies and methodologies can do for small scale farms worldwide to contribute to 
sustainable food security and nutrition.

 
 

Selvaraju Ramasamy
Head of the Research and Extension Unit 

Office for Innovation
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Glossary

Cluster Analysis: A cluster analysis is a statistical 
classification technique in which a set of objects 
or points with similar characteristics are grouped 
together in clusters. It encompasses a number 
of different algorithms and methods that are 
all used for grouping objects of similar kinds 
into their respective categories. The aim of 
cluster analysis is to organise observed data into 
meaningful structures to gain further insight 
from them.

Confusion Matrix:  In the field of machine 
learning classification, a confusion matrix is 
also known as an error matrix. A confusion 
matrix is a table that is often used to describe 
the performance of a classification model (or 
“classifier”) on a set of test data for which the 
true values are known. It allows for visualizing 
the performance of an algorithm.

Crop Richness: In this publication, the term refers 
to the number of total unique crops cultivated in 
one same region or in the same farm size cluster.

EDORA typology: A European typology 
developed by EPSON that attempts to capture 
the aspects of rural differentiation. It is divided in 
three typologies: Rurality/accessibility, Economic 
Restructuring and Performance. 

European Size Units: Abbreviated as ESU, this is a 
standard gross margin of EUR 1 200 that is used 
to express the economic size of an agricultural 
holding or farm. For each farm activity or 
‘enterprise’, such as wheat production, dairy 
cows or the output from a vineyard, the standard 
gross margin (SGM) is estimated based on the 
area used for the particular activity (or number of 
heads of livestock) and a regional coefficient. The 
sum of all such margins derived from activities 
on a particular farm is its economic size, which 
is then expressed in European size units (this is 
done by dividing the total SGM by euro 1 200).

EUROSTAT: Eurostat is the statistical office of 
the European Union. Its mission is to provide 
high quality statistics for Europe. Eurostat offers 
a whole range of important and interesting data 
that governments, businesses, the education 
sector, journalists and the public can use for their 
work and daily life.

Farm Structure Survey: This is also known as the 
Survey on the Structure of Agricultural Holdings, 
which is carried out by all European Union 
(EU) Member States. The FSS is conducted 
consistently throughout the EU with a common 
methodology on a regular basis and therefore 
provides comparable and representative 
statistics across countries and time, at regional 
levels (down to NUTS 3 level). Every three or 
four years the FSS is carried out as a sample 
survey, and once in ten years as a census.

F-Score: The F-Score is used to measure the 
accuracy of a test and can provide a more 
realistic measure of a test’s performance by 
balancing the use of precision and recall. The 
F-score is often used for information retrieval for 
measuring search, document classification, and 
query classification performance. 

Key Crops: Key crops, also called relevant crops, 
are the crops that were selected in this study 
for each reference region based on two criteria: 
1) Importance in terms of production and 
consumption; and 2) Largely produced in the 
region.

k-means: This is one of the simplest 
unsupervised learning algorithms that solves the 
well-known clustering problem. The procedure 
follows a simple and easy way to classify a given 
data set through a certain number of clusters 
(assume k clusters) fixed a priori. The main idea is 
to define k centroids, one for each cluster. Since 
it is important to pay special attention to where 
these centroids are placed, as different locations 
cause different results, it is preferable to place 
them as far away from each other as possible. 

NUTS Level: The Nomenclature of Territorial 
Units for Statistics, abbreviated NUTS (from 
the French version Nomenclature des Unités 
Territoriales Statistiques) is a geographical 
nomenclature subdividing the economic territory 
of the European Union (EU) into regions at three 
different levels (NUTS 1, 2 and 3 respectively, 
moving from larger to smaller territorial units).

Official Statistics: This term refers to the data 
collected from EUROSTAT and Agricultural 
Censuses from the reference regions of the 
study.

From Space to Farm: 
Characterization of Small Farms Using Remote Sensing Data
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Overall Accuracy: The overall accuracy is 
calculated by summing the number of correctly 
classified values and dividing by the total number 
of values. The correctly classified values are 
located along the upper-left to lower-right 
diagonal of the confusion matrix. The total 
number of values is the number of values in 
either the truth or predicted-value arrays.

Producer’s Accuracy: This is the accuracy of the 
map from the map maker’s point of view (the 
producer). This shows how real features on the 
ground are correctly indicated on the classified 
map or what probability there is that a certain 
land cover of an area on the ground is classified 
as such.

p-value: This is the probability of obtaining the 
observed results of a test, assuming that the null 
hypothesis is correct. It is the level of marginal 
significance within a statistical hypothesis test 
representing the probability of the occurrence 
of a given event. The p-value is used as an 
alternative to rejection points to provide the 
smallest level of significance at which the null 
hypothesis would be rejected. A smaller p-value 
means that there is stronger evidence in favour 
of the alternative hypothesis.

Random Forest: Random Forest is a machine-
learning classifier and regression that consists 
of a large number of individual decision trees 
that operate as an ensemble that will be used 
to make automatic classification. Each decision 
tree node uses a subset of attributes that are 
randomly selected from the whole original set of 
attributes. 

randomForest package: This is a complied code 
and sample data used for applying the Random 
Forest algorithm using the R software. It is 
stored under a directory called “library” in the R 
environment which was developed by Breiman 
and Cutler in 2018.

Reference Regions: The European regions that 
were selected as representative of Small Farms 
inside the SALSA project countries. The regions 
were selected based on the combination of size 
and economic indicators, EDORA typologies and 
expert consultations.

RGB:  RGB stands for “Red Green Blue.” It refers 
to three hues of light of the visible spectrum that 
can be mixed to create different colours (true 
or false) in an image. Combining red, green, and 

blue light is the standard method of producing 
colour images on screens such as TVs, computer 
monitors and smartphone screens.

Sentinel 1-SAR: Sentinel-1 is a Synthetic 
Aperture Radar (SAR) mission that provides 
continuous all weather, day-and-night imagery 
at C-band (centre frequency: 5.405 GHz), 
operating in four exclusive imaging modes with 
different spatial resolutions and coverages. SAR 
imaging is used for monitoring sea-ice zones and 
the polar environment; mapping in support of 
humanitarian aid in crisis situations; surveilling 
marine environments; monitoring land surface 
motion risks; and mapping land surfaces: forests, 
water, soil and agriculture.

Sentinel-2: SENTINEL-2 is a European wide-
swath, high-resolution, multispectral imaging 
mission. SENTINEL-2 carries an optical 
instrument with 13 spectral bands: four bands 
at 10 m, six bands at 20 m and three bands at 
60 m spatial resolution. Multispectral imaging 
can be used for land cover; land usage and land-
use-change detection maps; geophysical variable 
maps (leaf chlorophyll content, leaf water 
content and leaf area index); risk mapping; and 
fast images for disaster relief efforts.

Spectral Signature: Different surface types such 
as water, bare ground and vegetation types 
reflect radiation differently in various channels. 
The radiation reflected as a function of the 
wavelength is called the spectral signature of the 
surface. The spectral signature is specific to each 
type of surface like a fingerprint.

Standard Gross Margin: The standard gross 
margin, abbreviated as SGM, is a measure 
of the production or the business size of an 
agricultural holding. It is based on the separate 
activities or ‘enterprises’ of a farm and their 
relative contribution to overall revenue. For each 
separate activity (for instance wheat, dairy cows 
or a vineyard), an SGM is estimated based on the 
area (for crop output) or the number of heads of 
livestock (for animal output) and a standardised 
SGM coefficient for each type of crop and 
livestock, calculated separately for different 
geographical areas to allow for differences in 
profit. 

Sustainable Development Goals: The 2030 
Agenda for Sustainable Development, adopted 
by all United Nations Member States in 
2015, provides a shared blueprint for peace 

From Space to Farm: 
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and prosperity for people and the planet, 
now and into the future. At its heart are the 
17 Sustainable Development Goals (SDGs), 
which are an urgent call for action by all 
countries - developed and developing - in a 
global partnership. They recognize that ending 
poverty and other deprivations must go hand-
in-hand with strategies that improve health and 
education, reduce inequality and spur economic 
growth – all while tackling climate change and 
working to preserve our oceans and forests.

Training Data: Training Data is a sizable body 
of known data used for the training set. The 
training set is the data set on which the machine 
learning model is built. The training set is usually 
collected manually, and the classification model 
follows the exact same rules and definitions 
given in the training set.

User’s Accuracy: The accuracy from the point 
of view of a map user, not the map maker. The 
User’s Accuracy essentially tells the user how 

often the class on the map will be present on the 
ground. This is referred to as reliability.

Utilized Agricultural Area: Utilized Agricultural 
Area, abbreviated as UAA, is the total area 
taken up by arable land, permanent grassland, 
permanent crops and kitchen gardens used by 
the holding, regardless of the type of tenure or 
whether it is used as a part of common land. It 
excludes: mushrooms, unutilised agricultural land 
(NUAA), woodland (WA), other land, occupied by 
buildings, farmyards, tracks, ponds, etc.

Vegetation Indices: A vegetation index is a single 
value that quantifies vegetation biomass and/
or plant vigour. The vegetation index measures 
chlorophyll absorption through combinations 
of the red portion of the spectrum relative to 
reflectance or radiance in the near infrared. It is 
calculated based on two or more bands (e.g. red 
and near infrared bands) to improve the con-
tribution of vegetation properties in an image 
through remote sensing. 

From Space to Farm: 
Characterization of Small Farms Using Remote Sensing Data



6

Executive Summary

This publication describes the analytical process carried out under the European Union-funded SALSA 
project which enabled the development of a European map of the distribution of small farms at the 
NUTS-3 level and assessed the capabilities and usefulness of Copernicus Sentinel-1 and Sentinel-2 
satellites for small farms monitoring, specifically in providing information about crop types, crop area 
extent and crop production. 

The European map of small farms distribution was developed through a stepwise approach that 
combined diverse datasets and information gathered from key experts. The criteria used to classify 
small farms was defined by the SALSA partners and Expert panels, based on physical size (farms with 
less than 5 hectares of Utilized Agricultural Area) and economic size (farms with less than 8 Economic 
Size Units, ESU) of the Standard Gross Margin (SGM). 

These indicators were then analysed using k-means clustering technique and combined with the 
European Development Opportunities for Rural Areas (EDORA) typologies. Experts evaluated the 
results, and one map was selected as the most meaningful representation of the small farms typology 
across Europe.

The capabilities and usefulness of Copernicus Sentinel-1 and Sentinel-2 satellites as a method for 
small farms monitoring was assessed to objectively quantify the importance of small farms in terms of 
crop production. 

By considering a gradient of 21 Reference Regions (NUTS-3 level) distributed over eleven European 
countries (Bulgaria, Czech Republic, France, Greece, Italy, Latvia, Lithuania, Poland, Portugal, Romania, 
and Spain) and one African country (Tunisia), Sentinel images were tested in very differently structured 
farm landscapes, which allowed for a better understanding of the accuracy and effectiveness of these 
satellites for small farms assessment. 

Field data was collected in situ for calibration of the image classification model and validated across 
the reference regions.

Approximately 500 points were used to collect crop information in each reference region. Farmer 
surveys were conducted to acquire reliable data regarding the productivity of key crops in each 
region. With this information the crop type diversity was assessed and compared among different 
farm sizes. The results confirmed the importance of small farms for the conservation and maintenance 
of agrobiodiversity.

The crop classification method using satellite imagery presented different levels of efficacy over the 
regions and among the crops.  Among the analyzed crops, cereals showed to be more reliably mapped 
when applying the described methodology, followed by meadows, pastures and forage crops (MPFC), 
vineyards and orchards. The least well-classified class of crops in this study was that of the vegetables 
which comprised a high diversity of crops (e.g. carrots, legumes, onions and potatoes).

This study also showed the consistency of Sentinel-derived crop areas against documented crop areas 
from official statistics at the regional level. The relation between crop areas from both data sources 
(official statistics and Sentinel data) shows a significant and very high correlation with an R2 value of 
0.96 (p<0.001), demonstrating that there is no significant difference between the Sentinel-based crop 
area and the official regional statistics.

In summary, this report clearly showed that Sentinel-1 and Sentinel-2 missions open a new era of 
opportunities towards the development of more robust tools and methodologies based on remote 
sensing data to accurately assess small scale farming systems.

From Space to Farm: 
Characterization of Small Farms Using Remote Sensing Data
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From Space to Farm: Characterization of Small 
Farms Using Remote Sensing Data

Introduction

It is widely recognized that small farms play a relevant role in terms of food production and food 
security, as well as holding great significance in providing important social, cultural and environmental 
services in rural areas.  

The importance of small farmers and their role in food security has been highlighted on many 
occasions in international fora, such as the Committee on World Food Security (CFS), which is the 
foremost inclusive international and intergovernmental platform aiming to ensure food security and 
nutrition for all. 

The Sustainable Development Goals (SDGs) address the global importance of small-scale farming 
systems in the first instance under Goal 2: End hunger, achieve food security and improved nutrition and 
promote sustainable agriculture; and Target 2.3: By 2030, double the agricultural productivity and incomes 
of small-scale food producers. However, the extent and distribution of crop types, crop production, 
and its spatial distribution in a small-scale farming context still remain uncertain or unknown, as a 
large extent of small farms tends to be excluded from the official statistical surveys – especially in 
developing countries. 

Therefore, considering the importance of small farms, and the ambition of SDGs Goal 2, policymakers 
need tools that can provide accurate and timely information on the crop area extent, types and yield 
estimates to objectively quantify the crop production capabilities of small farms.

The project “Small Farms, Small Food Businesses and Sustainable Food Security” (SALSA) was 
developed taking this context into account.  SALSA aimed to provide a better understanding of the 
role of small farms and food businesses in sustainable food and nutrition security. Supported by the 
European Union’s Horizon 2020 program, SALSA consisted of a coalition of 16 European and African 
partners (including universities, research institutions and farmers’ organizations) which collaborated 
between 2016 and 2020. SALSA was implemented through an integrated multi-method approach 
in 30 regions in Europe and Africa, using the most recent satellite technologies, transdisciplinary 
approaches, food systems mapping and participatory foresight analysis to produce evidence-based 
policy recommendations.

As small farms production patterns were among the key concepts to be addressed, one of the main 
goals of SALSA was to estimate the current and potential production of small-scale farming systems at 
a regional level. An important first step in the analysis of SALSA was to develop and test methods and 
tools that can produce accurate and useful information about small farms. 

Definitions of small farms involving only the criterion of farm size have universal appeal, as they 
are relatively easy to apply and allow for simple comparisons across countries and world regions. 
However, they do not capture all the complexities of farming. 

In October 2016, the Food and Agriculture Organization of the United Nations (FAO), a partner in 
SALSA, hosted a first email conference titled “Exploring the contribution of small farms to achieving 
food security and improved nutrition”1, focusing the attention of researchers, educators and a 
wide spectrum of food chain/food system actors and entrepreneurs, as well as policymakers and 
administrators on multiple levels, on the role of small farms within a larger context of food security.  

1	 FAO summary document of the 1st FAO SALSA email conference. Available at http://www.fao.org/3/a-bq691e.pdf

From Space to Farm: 
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The aim was to take a fresh look at the contribution of small farms to food security and nutrition, 
allowing stakeholders worldwide to share their experiences and up-to-date knowledge regarding this 
important topic.

In April 2018, a second FAO-SALSA email conference was held with the title: “Small Farms, Small 
Food Businesses and Sustainable Food Security”2. The conference covered six overarching topics. The 
results provided further feedback on the work in the SALSA project through shared examples while 
also identifying key knowledge gaps that contribute to building the SALSA empirical base. 

Among other themes, the first FAO-SALSA email conference provided guidelines for defining small-
farms in regional contexts and research projects.

Definitions involving additional criteria to farm size were considered more meaningful, particularly 
those including indicators of the farms’ economic output, but data availability is often a limitation. At 
the same time there is an increasing need to better understand the relative importance and role of 
small farms in different regional contexts in order to support the design of public interventions. This is 
crucial for many regions in Europe, where changes in the farm sector are occurring at an exceptionally 
fast pace.

The main objective of this booklet is to describe the analytical process which enabled the 
development of a European map of the distribution of small farms at the NUTS-3 level and the 
capabilities and usefulness of Copernicus Sentinel-2 satellite as a data-based method for small farms 
assessment, specifically in providing information on the distribution (location) of small farms, crop 
types (crop diversity), crop area extent (crop acreage) and yield estimates (crop production).

This process considered different small farm configurations through the combination and analysis of 
different datasets with information obtained from key experts.  

Box 1 – The SALSA Project - Small Farms, Small Food Businesses 
and Sustainable Food and Nutrition Security
The project “Small Farms, Small Food Businesses and 
Sustainable Food and Nutrition Security” aims to provide 
a better understanding of the current and potential 
contribution of small farms and food businesses to 
sustainable Food and Nutrition Security (FNS). It is 
supported by the EU Horizon 2020 program, a coalition of 
16 European and African partners that are collaborating to 
assess the role of small farms and small food businesses in 
delivering a sustainable and secure supply of affordable, 
nutritious and culturally adequate food. 

The four-year SALSA project began in April 2016. The 
partners have adopted a novel, transdisciplinary, multi-
scale approach across 30 regions in Europe and Africa that 
builds on and connects relevant theoretical and analytic 
frameworks within a food system approach. Using this 
perspective, the project is looking beyond production 
capacity, and investigating food security in terms of the 
availability of nutritious and safe food, food access and 
control (including affordability), food utilisation and food 
stability. 

SALSA is paying particular attention to effectively foster 
stakeholder involvement, knowledge exchange and joint 
learning at local, regional, national and international levels.

SALSA is unravelling the complex interrelationships 
between small farms, small food businesses and FNS. It is 
also shedding light on the role played by small farms in (a) the 
balance between the different dimensions of sustainability, 
(b) maintaining more diverse production systems, (c) 
supporting the urban/rural balance in terms of labour and 
(d) facilitating territorial development in countries facing 
strong rural population growth.

Since its beginning, SALSA has convened two 
workshops at international conferences (XXVII European 
Society for Rural Sociology Congress and the 2017 Global 
Food Security Conference) to raise awareness and solicit 
input into the project’s research. 

Regional workshops in many of the reference regions 
are building SALSA communities of practice (CoP).

SALSA effectively engages with stakeholders and 
decision-makers regarding small farms and food and 
nutrition security, and facilitates a dialogue that cuts across 
classical boundaries in research, policy and practice.

As a place of meeting and knowledge exchange between 
different stakeholders, the CoPs help to integrate SALSA 
work with existing policy and practice discussions, and 
identify and support new market and policy arrangements.

2	 Background document to the FAO e-conference on “The Role of Small Farms Within a Larger Context of Food Security” 
http://www.fao.org/3/BU493en/bu493en.pdf
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Subjects, Materials and Methods

European Distribution of Small Farms

The first stage of the analytical process involved the elaboration of a European map showing the 
distribution of small farms at the NUTS-3 level. 

This process was developed through a stepwise approach that combined diverse datasets and 
information gathered from key experts. The criteria that were used drew on the thresholds defined 
in the project’s Conceptual Framework that classifies small farms in two ways: by physical size (farms 
with less than 5 hectares  of Utilized Agricultural Area) and by economic size (farms with fewer than 8 
Economic Size Units, ESU) of the Standard Gross Margin (SGM).

National Experts of the regions of interest and SALSA partners comprised the expert group that 
provided key information during the initial and final phases of the first stage of the analytical process. 

The stepwise process is simplified in Figure 1

 
Figure 1 – Flowchart describing the stepwise process 
to identify and characterize small farms across Europe

 
During the initial phase, the group of experts provided key information regarding the availability 
of datasets with spatial distribution information and statistical data of small farms in the national/
regional databases. This information was gathered, and statistical analysis was carried out.

Expert Consultation

Data Analysis

National Experts and SALSA Partners
Availability of spatial and statistical data in their 

countries

Analysis
Data were used to calculate set of indicators. The 
mean size of farms were also calculated. Cluster 

Analysis were performed

Expert Consultation

Selection of Reference Regions
After the combinantion of results, SALSA 

partners and National Experts, indicated 3 to 5 
relevant regions in terms of small farms density in 

their countries

Data Collection

Gathering Information
National databases with information about small 

farm’s distribution, physical and economic 
size collected

Combination of Results

Edora
The results of the cluster analysis were combines 
with the European Development Opportunies for

Rural Areas structural types

Results
Five cluster maps were obtaines and the most meaningful regarding the typology and distribution of small farms in Europe 

was selected
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The main sources of data for the initial phase were EUROSTAT, the latest National Agricultural Censuses 
and the European Farm Structure Survey (FSS).  

Data analysis

According to the definition of small farms agreed upon in the SALSA Conceptual Framework and expert 
panels, the occupational and economic variables were selected, and maps were created, based on the 
NUTS-3 georeferenced data.

The selected variables (indicators) used to identify areas with a high density of small farms were: 

●● density of farm units (number/ha) with less than 5 hectares;

●● percentage of the region occupied by Utilized Agricultural Area (UAA);

●● percentage of the UAA occupied by small farms defined as farms with less than 5 ha of UAA;

●● percentage of farm units (number) with less than 8 ESU/SGM; and

●● percentage of the region occupied by small farms defined as farms with less than 8 ESU/SGM.

The utilised agricultural area by farm size class, as well as the economic and physical size of the 
rural properties, were collected across Europe with high resolution at NUTS-3 level. According to 
the SALSA partners and Expert panels, these variables reflect the main characteristics of the spatial 
distribution of small farms in Europe (Figure 2).

 
Figure 2 – Maps with the selected indicators for spatial distribution of small farms 

across Europe at NUTS-3 level (except for Germany, at NUTS-2 level)
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Figure 2 – Maps with the selected indicators for spatial distribution of small farms 
across Europe at NUTS-3 level (except for Germany, at NUTS-2 level) (cont.)
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Figure 2 – Maps with the selected indicators for spatial distribution of small farms 
across Europe at NUTS-3 level (except for Germany, at NUTS-2 level) (cont.)
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The spatial distribution and classes of the selected indicators are not homogenous across the 
European region and cannot reflect singly the complexity of small farms. In order to combine all 
spatial information of the farms’ variables and incorporate it in one single map that reflects the real 
distribution of the small-scale farms in Europe, a cluster analysis was performed using k-means. 

Due to the complexity of some of the indicators, it was decided to use only this small set of non-
correlated variables and reduce the number of clusters (between 4 and 6), in order to improve the 
comprehensibility of the results.

After the cluster analysis, a final expert consultation with SALSA partners was carried out to identify 
the most reliable map for the distribution of small farms across Europe. The map based on the cluster 
with five variables was identified as the one that better displays the distribution and characterization 
of small farms.  

This map grouped small farms into three categories that were defined according to the characteristics 
of the groupings retrieved by the k means: Predominantly agricultural regions; Regions with a 
balanced distribution between agriculture and other land uses; Regions with little agricultural land 
surface; and in six sub-categories, based on farm size and income.  

The final map information was then combined with the European Development Opportunities for 
Rural Areas (EDORA) typologies, and based on this information, the experts of each country selected 
25 specific and representative regions of the small farms in 13 countries to perform more in-depth 
studies (Figure 3).

Figure 3. Methodological process implemented for mapping the distribution 
and characterization of small farms in Europe and selecting Reference Regions

Maps with selected 
Indicators

Cluster
Analysis
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Results

The cluster analysis provided a meaningful map regarding the typology and distribution of small farms 
across Europe. Six regions with similar characteristics were grouped and classified as follows (see also 
Figure 4): 

a) Predominantly agricultural regions

●● Cluster 1. An extremely high number of small farms with very low incomes. These are the core 
regions for small farms in Europe. They are predominantly farming regions (where the UAA = >50 
percent), of which a very significant part of the farming area (20 percent or more) is occupied by 
small farms (defined by area) and almost all farm units (more than 90 percent of all farms) are small 
farms in terms of economic size. These farms are mostly extremely small, on average the smallest 
small farms in Europe, both in surface area and economic size. These regions have few larger 
farms. 

●● Cluster 2. Regions with few, relatively small farms, that have medium incomes. These are 
predominantly large-scale farming regions, where small farms (both in terms of area and economic 
size) occupy just a small part of the farming area. The large farms occupy most of the agricultural 
land and are probably responsible for the majority of the production.

●● Cluster 3. Regions with a low proportion of small farms that are close to the upper size threshold 
and have high incomes. These are large-scale, specialized and market-oriented farming regions. The 
proportion of small farms is very low, and those that do exist are on average larger than in other 
regions of Europe, with higher incomes.

b) Regions with a balanced distribution between agriculture and other land uses

●● Cluster 4. Regions with a low proportion of small farms, which are relatively small and have low 
incomes. These are regions where farming occupies only a small part of the territory (mean value 
is close to 35 percent), but where 70 percent of the farm units are small farms, in economic terms, 
with very low incomes. Small farming is thus relatively important, although the farmers are mostly 
poor. These regions also have other types of farms.

c) Regions with little agricultural land surface

●● Cluster 5. Small farms exist in large numbers which are extremely small and have low incomes. 
These regions are either dominated by forestry or are primarily urban. The large majority (80 
percent) of farm units in these regions are extremely small in area (average < 2 ha) and economic 
size.

●● Cluster 6. Small parts of the region are occupied by small farms, which are close to the upper 
size threshold and have medium incomes. These are mostly regions dominated by forests, which 
contain the lowest proportion of agricultural land in Europe. However, almost half of the existing 
farm units are small in economic terms, yet still relatively important in the farming landscape.

Merging the cluster information with the EDORA typologies, the national experts and SALSA 
partners were asked to indicate 3 to 5 relevant regions within their countries, considering the 
diversity and distribution of small farms. The regions indicated by both a) the group of National 
experts and b) by SALSA partners were selected as Reference Regions. The 21 selected Reference 
Regions in Europe are shown in Figure 5. 

In conclusion, it is rather difficult to capture the diversity, heterogeneity and/or variability in each 
country in a European-wide analysis with the same (and limited) dataset. The analysis is particularly 
complex in regions where extreme situations occur. For example, Romania can be considered a 
hotspot of small farms, both in terms of structural and economic size. However, at European scale 
and with a simplistic and small set of variables, it is impossible to capture the Romanian asymmetries 
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in terms of small farms distribution since they show, in this context, lower spatial variability. If we 
increase the number of variables, or number of clusters, we lose readability, whereas with a low 
number of clusters or a reduced number of variables we are not able to capture this variability.

One of the major constraints in the development of an analysis on this scale and with this particular 
complexity is related to the quality of the data and particular elements that are considered relevant 
drivers of farm size in each country (e.g. biophysical constraints). The use of different size thresholds 
for including farms in national agricultural censuses is also a major limitation, constraining a European-
level analysis. Davidova et al. (2013) highlight the lack of adequate data concerns in specific 
subsistence farming. Subsistence farms tend to be excluded from official statistical surveys as they 
fall below size thresholds for data collection. Finally, continuous changes in administrative boundaries 
(e.g. Poland) constrain the spatial integration of statistical data.

Yet the SALSA approach allows for:

●● differentiating the Scottish uplands (croft regions) from the lowlands or the sheep farming systems 
of the north-western Ireland, which follow a tradition of multiple activities;

●● identifying the three main farm structures characterized by Kostrowicki (1970) in Poland;

●● separating the plots subjected to intense afforestation in Portugal, but where the small agricultural 
plots remain;

●● differentiating the mountain or Apennine areas in Italy; and

●● distinguishing the Southern and Alpine areas from the rest of the regions in France.

Moreover, the cluster map only represents the farm structure in terms of its structural and economic 
sizes. It is not possible to infer similarities or dissimilarities between regions concerning farm types 
or land use intensity. In view of the above-mentioned limitations, and considering the tremendous 
importance of small farms in many European regions, one of the SALSA project recommendations is 
that more efforts should be made to:

●● improve official statistical data on small farms (e.g. harmonise minimum farm size thresholds);

●● further elaborate the typologies of small farms presented in this report; and

●● further develop methods and technologies based on remote sensing for assessing the spatial 
distribution of small farms.

The high variability in the spatial distribution and types of small farms means that better information 
is needed to support policy development. 
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Figure 4 – Typology and distribution of small farms in Europe

 
 

Figure 5 – Geographic distribution of the Reference Regions within countries
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Spatial Characteristics and Assessment of Small Farms Distribution Based on 
Sentinel-2 Data 

This stage of the analysis focused on the development and testing of remote sensing methods based 
on Sentinel-2 images to generate useful information about small farms in very diverse landscapes 
and crops, thus allowing for a better understanding of the accuracy and effectiveness of this tool for 
assessing and monitoring small farms in Europe and Africa with validated methodological guidelines. 

The framework that was developed had the objective to establish remote sensing protocols and 
methods to produce maps that reflect the crop types cultivated by the small farmers across 21 
Reference Regions in 12 countries across Europe and Africa (Table 1). 

This data was then combined with information obtained through a Farmer’s Survey to estimate the 
amount of food produced by small farms as well as the potential of smallholders’ production increase 
in the Reference Regions. The information about yield gap is crucial to understanding the potential 
contribution of small farms for food security (Beddow et al. 2014).

Mapping Crop Types 

In order to make future investments, policies and logistical decisions that address food security, 
accurate and reliable information about the location and distribution of croplands and crop types is 
needed (Fritz 2013).

Country Reference region

Bulgaria Montana

Czech Republic Jihočeský kraj

France Vaucluse

Greece

Imathia

Larisa

lleia

Italy
Lucca

Pisa

Latvia
Latgale

Pierigia

Lithuania Vilniaus Apskritis

Poland

Rzeszowski

Nowosadecki

Nowotarski

Portugal
Alentejo Central

Oeste

Romania
Bistrița-Năsăud

Girgiu

Spain
Castellón

Córdoba

Tunisia Haouaria
 

Table 1. SALSA Reference Regions, plus Tunisia (Haouaria), under analysis to obtain crop field data 
and satellite images3 are reported in Figure 5

3	  For more details on why other SALSA Reference Regions were excluded from the analysis, see the SALSA Report: Deliverable 2.4. Report on the assessment 
and characterization of small farms distribution and spatial characteristics obtained from SENTINEL-2 data, page 6. 

From Space to Farm: 
Characterization of Small Farms Using Remote Sensing Data



18

A methodological approach based on three main steps was implemented under SALSA for obtaining 
crop type maps in the Reference Regions. 

The initial step was the collection of reference data in situ (field work) to create and calibrate the 
classification method. The final step consisted in the image analysis and classification applying 
machine learning techniques. 

A summary of each step is described below. 

 
Collection and Quality Control of Reference Crop Data in Each Region

The first step of the methodology consisted in intense fieldwork for crop type data collection. 

The field data collection (training data) must be representative of the output classes and their 
subclasses and must have a sufficient number of samples to allow for pattern recognition to occur 
(Muchoney and Strahler 2002).

The dataset obtained during the fieldwork was used for calibration and validation of the image 
classification procedure.

Due to the high costs of data collection at field level, a methodological approach was developed to 
select a minimum representative number of points for each region. Details about the methodology are 
described in the SALSA Deliverable 2.3 (Godinho et al. 2019).

Approximately 500 points were used to collect crop information in each reference region. The 
sampling method used 2 km x 2 km squares with an average of 20 sampling points/square. More than 
12 230 points were collected and checked by the different SALSA teams across the 21 Reference 
Regions. 

The crop type (training data) of each field point was verified, photographed and numbered, and the 
geographical coordinates were registered.

In order to ensure the standardization of the data collection process, and therefore the quality of the 
field data, a document summarizing the guidelines for field crop data collection was elaborated and 
distributed to all teams working on the field. A training session was also organised to provide practical 
instructions on how to carry out the survey in the field (work with GPS etc.).

Figure 6 shows one example of field sampling. Figure 7 shows examples of the crops used in the 
study.
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Figure 6 – Example of selected squares and spatial distribution of field points 
for crop type identification in one reference region

Figure 7 – Example of crop samples collected during the field survey campaign
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Satellite Image Processing and Classification

The satellite data (Sentinel-2 images) used for the crop type map classification was obtained from 
ESA’s Sentinel Scientific Hub (ESA 2017). All the available images for each reference region between 
April and September 2017 were downloaded. Only the images with cloud coverage inferior to 10 
percent were used. Level-2A image products were selected since they are already atmospherically 
corrected. 

A minimum of two Sentinel-2 images were established for crop type classification, ideally one image 
in spring and another in summer. However, considering the Sentinel-2A and 2B sensors, it was not 
possible to obtain the minimum cloud-free (<10 percent)  Sentinel-2 images for 6 regions: Montana 
(Bulgaria); Jihočeský kraj (Czech Republic), Latgale (Latvia), Pieriga (Latvia), Nowosadeki (Poland), and 
Nowotarski (Poland). Therefore, the solution was to use the Sentinel-1 SAR images for the crop type 
mapping for those regions.  

The Sentinel-1 satellite is a radar system that is able to register the Earth’s surface despite the cloud 
cover. Sentinel-1A and 1B are able to obtain images of the same place over a 6-day interval, greatly 
improving the ability to identify crop species. Nevertheless, a higher number of available Sentinel-1 
images imposes more computational power resulting in a time-consuming process. Therefore, a 
monthly composite using at least one image every 6 days was built using the Google Earth Engine 
cloud computer platform. 

More details about technical characteristics of Sentinel-1 and Sentinel-2 images are described in the 
Box 2.

Box 2 – The Copernicus Constellation: Sentinel Satellites 
The Copernicus Programme is a cornerstone of the 
European Union’s efforts to monitor the Earth and her 
many ecosystems, whilst ensuring that her citizens are 
prepared and protected in the face of crises and natural 
or man-made disasters. Building on the foundations of 
deeply rooted scientific knowledge and decades of EU 
investment in research and technological development, 
the Copernicus Programme is exemplary of European 
strategic cooperation in space research and industrial 
development.

European Space Agency is currently developing a 
family of missions, called Sentinels, that are specifically 
designed for the operational needs of the Copernicus 
Programme.

Each Sentinel mission is based on a constellation of 
two satellites to fulfil revisit and coverage requirements, 
providing robust datasets for Copernicus Services.

These missions carry a range of technologies, such 
as radar and multi-spectral imaging instruments for land, 
ocean and atmospheric monitoring.

Sentinel Satellite Family:

•	 Sentinel-1 is a polar-orbiting, all-weather, day-and-
night radar imaging mission for land and ocean services 
(launched).

•	 Sentinel-2 is a polar-orbiting, multispectral high-
resolution imaging mission for land monitoring to 
provide, for example, imagery of vegetation, soil and 
water cover, inland waterways and coastal areas. 
Sentinel-2 can also deliver information for emergency 
services (launched).

Source: European Space Agency - ESA

 
 
 
 
 
 
 
 
 
 
 
 
 
 

•	 Sentinel-3 is a multi-instrument mission to measure 
sea-surface topography, sea- and land-surface 
temperature, and ocean and land colour with high-end 
accuracy and reliability. The mission will support ocean 
forecasting systems, as well as environmental and 
climate monitoring (launched).

•	 Sentinel-5 Precursor – also known as Sentinel-5P – is 
the forerunner of Sentinel-5 that provides timely data 
on a multitude of trace gases and aerosols affecting air 
quality and climate (launched).

•	 Sentinel-4 is a payload devoted to atmospheric 
monitoring that will be embarked upon a Meteosat Third 
Generation-Sounder (MTG-S) satellite in geostationary 
orbit.

•	 Sentinel-5 is a payload that will monitor the atmosphere 
from polar orbit aboard a MetOp Second Generation 
satellite.

•	 Sentinel-6 carries a radar altimeter to measure 
global sea-surface height, primarily for operational 
oceanography and climate studies.
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Methodological workflow for crop type mapping

This section will briefly describe the workflow carried out to produce the crop type maps. The 
methodological framework consisted in 10 main stages as follows:

1.	 downloading of multi-temporal Sentinel images and preprocessing;

2.	 vegetation indices computation to be used as auxiliary information in the classification;

3.	 creation of multi-temporal NDVI stack for the segmentation process;

4.	 image segmentation;

5.	 preparation of the crop dataset to be used in the classification;

6.	 selection of the segments intersected by the crop field points;

7.	 extraction of all the pixels within the segments to be used in the classification procedure;

8.	 image classification (pixel-based) using Random Forest machine learning algorithm;

9.	 accuracy assessment of the classification; and

10.	 building of the small farms crop type classification and creation of the maps.

A detailed description about the methodological framework is described in Deliverable 2.3 of the 
Salsa Project (Godinho et al. 2019). 

Figure 8 presents a flowchart illustrating the image analysis process used to estimate the distribution 
of small farms across the European reference regions. 
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Figure 8 – Flowchart illustrating the processing scheme used to create distribution maps of small farms 
based on Sentinel-2A and Google earth images (Godinho et al. 2019) 

From Space to Farm: 
Characterization of Small Farms Using Remote Sensing Data



23

Crop Type Dataset

A final dataset for each region was built based on the crop data which had been collected from field 
work. The dataset was checked point-by-point, through visual inspection of the digital photos taken 
by the SALSA teams on the field, as well as by superimposing the points over the Sentinel-2 and high-
resolution images from the Google Earth Platform.

This process allowed for checking the thematic and geographic accuracy, which was essential to 
ensure data quality. Points that did not represent the correct crop data or that were not collected 
properly were excluded. Moreover, all the points registered as “non-identified crop type”, “tillage 
lands” or “plowed lands” were removed from the final dataset.

After this process, the distribution of all validated points was combined with the segment boundaries 
(they represent the boundaries of the crop plot identified during the field work and are generated by 
the image segmentation process). In this way it was possible to identify the segments (polygons with 
the crop plots) related to each point. 

 
Selection of the crops

In order to understand and assess the regional food systems, and particularly the contribution of 
small farms and related small food business to Food Nutrition and Security (FNS) in each reference 
region, a set of relevant crops were selected based on two criteria: 1) Importance in terms of 
production and consumption and 2) Largely produced in the region. Both criteria are related to the 
spatial representativeness of the crops within the region and thus potentially easier to obtain enough 
field information (field points).

In this way, the crop types that covered a residual percentage in terms of cultivated area, or not 
considered alimentary products (such as ornamental flowers and fiber crops) were not included in the 
analysis, reducing the classification errors. Nevertheless, in some specific cases, crop types that fitted 
both criteria were excluded from the analysis due to the lack of representative points in the dataset.

 
Image classification and accuracy assessment

For the satellite imagery classification, a pixel-based supervised Random Forest (RF) machine-learning 
algorithm was applied. The effectiveness of this pattern recognition algorithm has been demonstrated 
in several studies, with multiple applications in science, such as: crop classification (Li et al. 2020), 
mapping of soil contamination (Tan et al. 2020), prediction of river pollution (Victoriano et al. 2020) 
and human cancer diagnosis (Wang et al. 2020).

This method presents multiple benefits: it can be run efficiently on large databases; it can handle 
thousands of input variables without variable deletion; it is able to estimate the importance of 
variables to the model; it generates an internal unbiased estimate of the generalization error; it is 
relatively robust to outliers and noise, and it is computationally lighter than other tree ensemble 
methods (Rodriguez-Galeano et al. 2002).

The Random Forest classification in this study was implemented using the randomForest package (Law 
and Wiener 2002) from R software.  

For the Random Forest classification, the crop segments dataset from each region were split into 
training (75 percent ) and testing (25 percent ) subsets. The training subset was used to train the 
RF model by using 1 000 trees to obtain stabilized variable importance estimation (Law and Wiener 
2002). The test or validation subset in turn was used to evaluate the model performance through 
confusion matrix analysis.  This method allows for calculating diverse accuracy elements of the 
model: overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA).
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Furthermore, the F-score (harmonic mean) was computed for each crop. This score is often used to 
measure the accuracy of a test and classification performance, providing a more realistic measure 
using both precision and recall. The F-score ranges from 0 to 1; the higher the F-score, the higher the 
accuracy of the classification.

Results can be observed in Table 2.  

 
Crop area and production estimation

The estimation of crop areas plays an important role, as it makes it possible to make a worldwide 
assessment of the total area, and with local data, estimate the production potential for different crop 
commodities. It is generated by combining the unbiased crop area with the field-level crop yields.

The understanding of the spatial patterns of agricultural production in small farms can reveal 
untapped opportunities regarding regional marketing, intensification and diversification, processing 
and trade and/or might uncover significant levels of regional inequality that could be helpful in 
shaping spatially-strategic responses to such opportunities and challenges. The more reliable the 
spatial information is, regarding the location (area) and performance (yield), the more cost-effective 
the formulation and targeting of appropriate policy and investment actions can be (You et al. 2014).

The classic way to estimate crop area through remote sensing techniques (classified images) is 
by simply counting the number of pixels allocated to each crop and multiplying by the pixel area.  
However, this method of crop area estimation is biased due to classification error (Canter 1997).

In order to avoid this error and reduce the uncertainties in crop production estimation, a direct 
calibrator estimator of the area based on ground truth information was used (Gallego 2004; Lambert 
et al. 2018).

After the estimation of the crop areas (unbiased), the crop production was calculated by using the 
estimated crop yields multiplied by the corresponding crop area of the small plots (<5 ha). The 
information of the crop yields was obtained through the farmers survey described in the Salsa 
Deliverable 3.14. 

For each of the 21 Reference Regions, the average number of farmers interviewed was 32; the 
farmers were asked about the crops that they produce, and when the selected key crops were 
present, they were asked to provide an estimated yield of the crop, based on the average value in the 
last five years. Based on the farmers survey, the average yields per key crop were computed for each 
reference region.

In order to ensure that the crop production estimation was precise, the unbiased crop area 
computation as well the subsequent crop production estimates were performed only for the key 
crop products that presented F-score classifications greater than 75 percent, guaranteeing a reliable 
estimation only for the best classified crops. 

This approach reduced the error propagation, when excluding the areas where the crop classification 
presented low, or very low accuracy levels which could have reduced the strength of the overall 
conclusions about the main contributions of small farms for the FNS.

4	 For more details, see the SALSA Report: Deliverable 3.1 Set of 30 regional reports with the results of the validated in-depth analysis of regional food systems and 
the contribution of small farms and related small food businesses to FNS (reports based on a common reporting template).  
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Box 3 – Machine Learning- Automated Supervised Classification 
and Random Forest Algorithm 
In the Machine Learning - Automated Supervised 
Classification, the user or image analyst “supervises” the 
pixel classification process.

The user assigns the various pixel values or spectral 
signatures that should be associated with each category 
(class) of sites (objects). This is done by selecting 
representative sample sites (object) of a known crop 
(class) called Training Data. Each class is characterized by a 
specific spectral signature (fingerprint). 

The computer algorithm then uses the spectral 
signatures from these training areas to classify the whole 
image. For an accurate classification, either the classes 
must be different from each other and not overlap, or they 
should only minimally overlap with other classes.

Random Forest Algorithm in turn is a supervised machine 
learning classification and regression technique that 
creates a vast number of uncorrelated decision trees at 
training time. 

A forest is comprised of trees. It is said that the more 
trees a forest has, the more robust it is. 

Random forest creates decision trees on randomly 
selected data samples, gets a prediction from each tree 
and then selects the best solution by voting in the most 
accurate decision tree. It also provides a ranking of the 
importance of variables.

Random forest algorithm has the advantage of dealing 
with noise and large datasets, and it provides better 
estimation of performance than traditional regression tree 
approaches.
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Results

Crop types classification

Assessment of crop types diversity based on field data sampling

Crop diversity has been considered an important part of the agricultural landscapes, by benefiting 
a set of ecosystems services. Crop diversity enhances the resilience of the field to be attacked by 
pests and diseases, increases the suppressive effect of soils, provides shelter and food for beneficiary 
insects that can act as pollinators and biological control agents, reduces erosion and nutrient 
depletion, enhances the biodiversity of the soil, and has the potential to stabilize the national food 
production systems (Renard and Tilman 2019).

The collected crop field data represents a sample of all features present in each reference region in 
terms of its agroecosystem composition. Thus, aside from its importance in the image classification 
phase, the field data have the potential to be used as a reliable data source for a first assessment 
about the crop diversity that exists in each region. 

Therefore, based on the crop plots visited in each region (max: 693, min: 316, average: 509), a total 
of 124 crop types were registered over the 21 regions. The highest crop diversity was registered in 
Imathia (Greece) with ± 35 crop types, and the lowest crop diversity was observed in Nowotarski 
(Poland) and Haouaria (Tunisia) with only 11 crop types (Figure 9).

In order to understand the relationship between crop diversity and farm size, all the 21 Reference 
Regions were grouped into four farm size categories (0-5 ha, 5-10 ha, 10-20 ha and > 20 ha) and for 
each category the unique crop types were counted. 

The results revealed that the regions exhibiting the lowest mean farm size (0-5 ha) presented greater 
crop richness (diversity) when compared to the farmers with larger sized farms (>20 ha) - Figure 10.

These results suggest a negative relationship between crop diversity and mean farm size at the 
regional level, which is in agreement with the study conducted by Ricciardi et al. (2018) that indicates 
that agricultural landscapes with a predominance of small farms are more diversified, and thus have 
the potential to improve the nutrient adequacy and food security in such regions (Herrero et al. 2017). 

The SALSA project also concluded that the contribution of small farms to increase crop diversity is 
more evident when considering the agricultural landscape rather than the crop diversity within the 
small farms.
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Figure 9 – Distribution of crop richness across SALSA Reference Regions

Figure 10 – Distribution of crop richness values over farm size categories. 
Total unique crop species were counted for all Reference Regions with a mean farm size within one of the 

four categories. Regional mean farm size was obtained from the official statistics.
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Crop type mapping and accuracy assessment

The satellite image supervised random forest classification performed for the selected data showed 
that the accuracy of crop types identification varied based on the geographical region, ranging from 
59.5 percent  to 91.4 percent  with a mean overall accuracy of 81.6 percent (Table 2).  Of the 21 
regions in the study, 14 showed overall accuracy values higher than the mean value (in bold). 

Imathia (Greece), Bistrita-Nasaud (Romania) and Rzeszowski (Poland), presenting an accuracy of 
91.4 percent, 91.4 percent and 90 percent, respectively. The lowest accuracy values were observed 
in Castellón (Spain), Pisa (Italy) and Latgale (Latvia) showing an overall accuracy value of 59.6 percent, 
65.7 percent and 72.6 percent, respectively.

Country Reference Region Satellite - derived map Overall 
accuracy Kappa

Bulgaria Montana Sentinel - 1 83,0% 0,76

Czech Republic Jihočeský kraj Sentinel - 1 82,8% 0,73

France Vaucluse Sentinel - 2 88,3% 0,85

Greece

Imathia Sentinel - 2 91,4% 0,83

Larisa Sentinel - 2 86,8% 0,77

lleia Sentinel - 2 78,3% 0,73

Italy
Lucca Sentinel - 2 87,4% 0,83

Pisa Sentinel - 2 65,7% 0,55

Latvia
Latgale Sentinel - 1 72,6% 0,55

Pierigia Sentinel - 1 81,9% 0,72

Lithuania Vilniaus Apskritis Sentinel - 2 85,6% 0,76

Poland
Rzeszowski Sentinel - 2 90,0% 0,89

Nowosadecki + Nowotarski Sentinel - 1 78,9% 0,64

Portugal
Alentejo Central Sentinel - 2 73,8% 0,65

Oeste Sentinel - 2 82,5% 0,77

Romania
Bistrița-Năsăud Sentinel - 2 91,4% 0,88

Girgiu Sentinel - 2 83,6% 0,79

Spain
Castellón Sentinel - 2 59,6% 0,50

Córdoba Sentinel - 2 83,2% 0,78

Tunisia Haouaria Sentinel - 2 86,0% 0,82

Mean 81,6% 0,74

Table 2 – Overall accuracy and kappa values obtained for each crop type map 
among the 21 Reference Regions

 
Four main reasons can be considered to be responsible for the differences in terms of accuracies 
observed over the regions: i) different number of satellite images used per region; ii) the crop season 
of the images; iii) the spatial and spectral heterogeneity of each agricultural landscape and within crop 
type classes analysis (ex. Figure 11); and iv) the availability and representativeness of the field dataset 
– crop type polygons to train the classification models – (Torbick et al. 2018; Lobell, 2013; Jain et al. 
2013, 2016; Lambert et al. 2018 ; Lebourgeois et al. 2017 and Teluguntla et al. 2018). 
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Figure 11 – Example of how different two agricultural landscapes can appear. The images here are seen 
from spatial and spectral heterogeneity points of view. Both images represent an NDVI RGB (R: NDVI - 

April; G: NDVI - June; B: NDVI - August). Upper: Imathia (Greece); Lower: Castellón (Spain).
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There is no hierarchical importance in the sequence of the four main reasons presented above. In 
fact,  detailed research that is truly focused on the study of the main impacts of each one of these 
factors on the accuracy levels of satellite-derived crop maps (and in general land cover/use) is still 
lacking in the literature. Therefore, future efforts towards a better understanding of this issue should 
be promoted. In general, the results reported here are clearly in agreement with some recent studies 
that have been proving the accuracy in using Sentinel-1 and Sentinel-2 data to produce crop type/
land cover maps in such complex small-scale agricultural areas (Lambert et al. 2018; Kenduiynwo et al. 
2018 and Clerici et al. 2017).

The crop classification levels derived from the confusion matrix and produced for each reference 
region show that F-scores vary over the regions and among the crops. In order to better understand 
the different accuracy levels between crop types, the most common crop types were selected 
for comparison purposes. Among the analyzed crops, cereals showed to be more reliably mapped 
following the described methodology, with an average F-score of 82.8 percent, followed by meadows, 
pastures and forage crops (MPFC) with an F-score of 78.5 percent, vineyards (F-score = 78.4 percent), 
and orchards (F-score = 69.9 percent). The least well-classified class of crops in this study was that 
of the vegetables. This class comprised a high diversity of crops (e.g. carrots, legumes, onions and 
potatoes), with an average F-score of 52.7 percent. This weak result can be explained due to the 
different crop architecture of the vegetables, and high heterogeneity on the spectral signature of the 
plants (Figure 12).  On the contrary, the maize crop class was identified as the more homogenous crop 
in terms of spectral signature.

However, the results reported here showed a high variation among maize F-scores, with values 
ranging from 97.1 percent to 11.1 percent (average of 64.4 percent). These results may indicate that 
the number and size of the data sample used for maize classification, applying the random forest 
model, are determining the classification accuracy for this crop. These results corroborate with the 
main conclusions founded by Champagne et al.  (2014) that showed that classification accuracy 
increases with an increase in the number of field samples used to train the classification model.

Figure 12 – Comparison of the F-score values obtained for each dominant crop type.  Red diamonds 
represent the mean F-score value, while the black lines inside the box represent the median. 
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An example of the random forest classification (for Pisa, Italy) can be observed in Figure 13, which 
highlights the small agricultural plots (< 5 ha).

 

Figure 13 – Example of crop types in the small farms assessment using Sentinel 2 satellite imagery

Crop area and crop production estimation

Crop area estimation

As mentioned in the previous sections, in order to compute an unbiased area for the key crops, 
only the crops with classification accuracy superior to F-score 75% should be used to guarantee 
more confidence when drawing conclusions. However, in order to make it possible to estimate the 
crop production for at least one key crop per selected region, an F-score lower than 75 percent 
was accepted for Larisa (F-score for vegetables = 73.2 percent ), Latgale (F-score for wheat = 68.1 
percent), Nowosadecki and Nowotarski (F-score for cereals = 70.8 percent ). For Pieriga (Latvia), the 
key crops products that were mapped were wheat, vegetables, and orchards, with F-scores of only 
18.4 percent, 17.9 percent and 68.0 percent, respectively.

For this region, a class of cereals (wheat, oat, barley, and rye) was also mapped and presents a high 
accuracy level (F-score = 88.8 percent). It was thus selected as a key crop product instead of wheat. 
Regarding the field-level yield data obtained from the farmers’ interviews, it was found that such 
information was absent for some key crop products or for some regions it was calculated based on 
very few farmers’ interviews (Table 3). Therefore, caution must be employed before interpreting the 
crop production estimations for those regions with limited field-level yield data. 
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Table 3 - Unbiased crop area for small plots of <5 ha (output 4) and production estimations (output 5) 
for each key crop product

Reference region Key crop types 
mapped in WP2 Fscore (%) crop area 

(ha)

# of 
farmers 

interviews

yield 
estimation 

(ton/ha)

crop 
production 
(ton/year)

Montana Cereals 83,4 3523,98 1 4 14095,92

Jihocecky kraj Wheat 85,5 2140,48 0 6.1* 13056,94

Vaucluse Vineyards 92,1 10578,4 2 4,15 43900,4

Imathia Peaches 80,4 8782,06 38 30,82 270663,09

Larisa Vegetables 73,2 814,55 6 3,13 2549,55

lleia
Olives Groves 85,5 20618,2 28 6,51 134224,28

Vineyards 77,3 2289,35 5** 13,6 31135,1

Lucca
Olives Groves 87,2 2180,83 18 4,23 9224,9

Vineyards 81,9 789,9 13 7,35 5805,79

Pisa Cereals 75,4 1304,62 5 4,4 5740,32

Latgale Wheat 68,1 6593,26 18 2,98 19656,85

Pierigia Cereals 88,8 3389,91 7 2,17 7356,1

Vilniaus Apskritis Vegetables 76,5 1592,14 11 3,9 6209,34

Rzeszowski
Cereals 91,7 15603,1 34 4,79 74738,9

Potatoes 86,9 8714,34 29 18,53 161476,72

Nowosadecki 
Cereals 70,8 10779,93 38 3,31 35681,56

Apples 81,4 1705,5 9 33,33 56844,32

Nowotarski Cereals 70,8 3020,26 26 2,89 8728,55

Alentejo Central Vineyards 87,5 1867,13 16 7,89 14731,66

Oeste
Pears 90,9 2407,64 16 14,01 33731,04

Vineyards 83,4 3627,34 21 7,26 26334,49

Bistrița-Năsăud
Vegetables 75,2 532,13 0 - -

Orchards 98,2 4799,07 21 1,59 7630,52

Girgiu
Cereals 98,2 17416 14 4,39 76456,24

Sunflower 75,9 6152,74 4 1,69 10398,13

Castellón Citrus 88,1 17016,44 10 34,2 581962,3

Córdoba

Cereals* 87,8 2742,21 10 2,95 8089,52

Olives Groves 87,2 31449 12 5,15 161962,35

Vineyards 85,5 1857,41 10 8,62 16010,87

Haouaria
Tomato 95,5 852,33 11 65,91 56117,37

Pepper 88,8 1332,44 10 6,95 9260,45

Total 196475,7 Total 1903833,35

 
Note: * Due to the absence of field-level wheat information the mean national wheat yield was used.  
** For Ileia, the information about vineyard yields was obtained in two different ways: 5 out of the 17 inquired farmers delivered the information in tonnes of 
grapes per hectare, while 12 give this information in dried grapes per hectare. In order to be comparable with other regions with vineyards, the information in 
tonnes of grapes per hectare was used.
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The consistency of the Sentinel-derived crop areas was evaluated against documented crop areas 
from official statistics at the regional level. For this purpose, the area covered by each key crop 
product cultivated by small farms in each region was extracted from the regional statistics and 
regressed against the unbiased crop area (plots < 5 ha) estimated by Sentinel using linear regression 
(Figure 14).

The relation between crop areas from both data sources (official statistics and Sentinel data) shows 
a significant and very high correlation with an R2 value of 0.96 (p<0.001), demonstrating there is no 
significant difference between the Sentinel-based crop area and the official regional statistics. 

Figure 14 – Comparison between Sentinel-based crop area estimations 
and those from the official regional statistics

 
These results were surprising for the SALSA project team, since it was expected that a considerable 
number of small farms were not considered for the statistic records. On the one hand, it was possible 
to conclude that the official regional statistics information concerning small farms are more accurate 
than expected. On the other hand, this high correlation can also confirm the suitability of the use 
of Sentinel images in providing accurate and reliable information about crop area extent in complex 
agricultural systems.

Among the Sentinel-based crop area estimations obtained for the 21 Reference Regions, only potatoes 
in Rezewoski (Poland) and citrus in Castellón (Spain) showed overestimation in comparison with the 
official statistics. Cereals in Rezewoski (Poland) presented underestimation compared with the official 
data. In these cases, the official statistics may not cover all the information of small productive farms 
areas per crop. 

Even if some of the Sentinel-based area estimations differed slightly from the official records, the overall 
results clearly demonstrate that the crop area obtained from the Sentinel imagery can be used with 
confidence, in particular for those regions where the information is not fully represented by the official 
statistics.

To have a better comprehension of the relative importance of the small farms for each crop type, the 
percentage of the small farms’ contribution in terms of area in relation to the total area (all farm 
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ranges) per crop was calculated. For this, the total area covered by specific crop product over the 
region was extracted from the official statistics at a regional level (Figure 15). 

 

Figure 15 – Percentage of the total regional crop type area cultivated in small farms. 
In some regions, small farms correspond to almost 100 percent of the total crop area, which highlights 

the relevance of small farms in these contexts.

 
Crop production estimation

The unbiased cultivated area estimations merged with the field-level yields assessment of the key 
crops resulted on crop production estimations for the small farms across the reference regions. The 
results showed a total of 1 903 833.35 tonnes of agricultural products produced by small farms over 
the 21 Reference Regions of which 1 088 749.56 tonnes of fruits (grapes, apples, pears, peaches and 
other orchards), 315 809.66 tonnes of oil crops (olives and sunflower grains), 263 600.90 tonnes of 
cereals (wheat, barley, oats and rye), and 235 673.43 tonnes of vegetables (eg. potatoes, tomatoes, 
peppers, pulses, beans, etc.). 

These results indicated that the small farms present in the reference regions have the potential to 
produce an average of 19.5 tonnes/ha/year of fruits, 18.0 tonnes/ha/year of vegetables, 5.2 tonnes/
ha/year of oil crops, and 4.0 tonnes/ha/year of cereals.

Given the considerable difference in crop area estimations, and yield levels due to weather conditions, 
agronomic management and market orientation, different production levels were observed within key 
crops across reference regions (e.g. cereal: min 2.17 tonnes/ha; max= 4.79 tonnes/ha). 

Considering absolute values, the highest production levels were from citrus (581 962.30 tonnes)
in Castellón (Spain); peaches (270 663.09 tonnes) in Imathia (Greece); olives (161 962.35 tonnes) in 
Córdoba (Spain); and potatoes (161 476.72 tonnes)in Rzeszowski (Poland). The lowest production 
estimations were obtained for vegetables (2 549.55 tonnes) in Larissa (Greece), cereals (5 740.32 
tonnes) in Pisa (Italy), vineyards (5 805.79 tonnes) in Lucca (Italy) and vegetables (6 209.34 tonnes) in 
Vilniaus Apskritis (Lithuania).

The importance of small farms in terms of crop production were evaluated and the results proved 
that small farms are responsible for a very high percentage of the total regional production for a set of 
crops (Figure 16). 
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Figure 16 – Percentage of the total regional crop type production produced by small farms. 
Here, there are also products that are almost 100 percent produced by small farms.

 
In Haouaria, for example, small farms are responsible for producing 92.6 percent of the peppers. In 
Nowosadecki, the small farmers contribute with 86.4 percent of the apple production; in Rzeszowski 
the small farms are responsible for 75.3 percent of the potato production; small farms also are 
responsible for 70.9 percent of the peach production in Imathia.

The percentage of small farms’ production that was higher than the total estimation was found in two 
cases: tomatoes in Haouaria (102.1 percent) and citrus in Castellón (108.1 percent). These results can 
be explained due to the differences observed in terms of area and yield estimations obtained from 
Sentinel data, field interviews and official statistics. 

For example, from the Sentinel crop map the total area covered by citrus in small scale plots was 
estimated as 17 016.74 hectares, while the official statistics present an area of 14 583.70 hectares, 
resulting in a difference of 2 433.04 hectares. In addition,, the field-level information showed different 
results from those reported on official data regarding productivity (yield per area): from the interviews 
it was estimated that there was a yield of 34.2 tonnes/ha while in the official statistics this value was 
only 15.3 tonnes/ha for the Castellón region. 

However, none of these values seem to be accurate, since the national average citrus yield is 19.1 
tonnes/ha (Navarro et al. 2015). Therefore, with more area covered by citrus, as well as a higher yield 
value used to compute the citrus production, it is expected that the relative importance of small farms 
in this region exceeds 100 percent in terms of citrus production. 

Regarding the tomato production estimations, the area covered by this crop, which was obtained with 
a very high accuracy level (F-score=95.5 percent ) from the Sentinel data, was 852.3 hectares which 
contrasts with the 480.0 hectares given by the official statistics. The difference between the tomato 
yields obtained from field interviews (65.9 tonnes/ha) and the ones from official statistics is very low 
(68.8 tonnes/ha), suggesting that the main difference in tomato production estimations is much more 
connected to some inaccuracies in the official statistics of Haouaria region, specifically concerning the 
tomato area statistics.
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Final Remarks

The obtained results derived from Sentinel-1 and Sentinel-2 images acquired during the spring-
summer season of 2017 produced good classification accuracies (mean values OA = 81.6 percent  
and F-score = 70.2 percent for several crop types under small scale farming systems with different 
environmental and territorial conditions. Appling the methodology to the 21 Reference Regions, it was 
possible to understand the effectiveness of Sentinel data combined with field data in producing high-
resolution crop maps. 

The field data is needed to capture the spectral signature (fingerprint) of each main crop type across 
different agricultural season periods. This process is especially needed when small farms dominate the 
agricultural landscape and crop diversity is the main characteristic in the spatial pattern.

Aside from the classical accuracy metrics used to access the suitability of Sentinel data in producing 
accurate and useful information about crop area extent in small-scale farming systems, the results 
obtained through remote sensing were compared with the official statistics of each reference region. 
The results presented a strong correlation (R2 = 0.96, p-value < 0.001) between Sentinel-based 
estimations and official statistics.

 
This result leads to two main conclusions:

a) 	 These images can be used as the main source to provide fairly accurate estimations on crop 
area extent for regions where there is no up-to-date information, or where no information 
exists. Furthermore, this opens up the possibility of monitoring changes, avoiding the very heavy 
procedure of data collection for statistical data sets.

b) 	 When statistical data sets concerning small farms and differentiating crops exist, the available 
data has shown to be accurate and can thus be used as quality information about small farms.

Regarding the crop production estimations generated by combining the unbiased crop area with 
the field-level crop yields, the results hereby reported highlighted the fact that small farms make an 
important contribution in terms of crop production of the selected crops. 

In summary, this report clearly shows that Sentinel-1 and Sentinel-2 missions open a new era of 
opportunities towards the development of more robust tools and methodologies based on remote 
sensing data to accurately assess food security in small scale farming systems and monitor changes 
using an accelerated method.  The current unseen drivers of change linked to climate change, global 
drivers and markets highlight the importance of straightforward evaluation and monitoring methods 
on farm systems and production variations, thus the use of these tools hereby exploited offer a range 
of possibilities that are worth exploring further in the future.
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Earth Observation Data and the Sustainable 
Development Goals: Insights from FAO-ESA 
Partnership 
In order to monitor the commitment by world leaders to achieve the agreed upon Sustainable 
Development Goals and targets (SDGs), countries are expected to report on the progress made 
towards achieving the SDGs on a regular basis. However, five years after the implementation of the 
2030 agenda, the data and capacity gaps for monitoring SDGs, including data related to food and 
agriculture, are still huge. For instance, in 2019, countries were able to report on average at least 
one data point for just 43 percent of the SDG indicators under FAO custodianship. One of the main 
tenets in improving data generation for monitoring progress related to agriculture is to bridge the 
existing data gaps in many countries while reducing the cost of data production and dissemination.  
Addressing this seemingly paradoxical problem requires adopting new approaches and investing in 
innovative, modern and cost-effective tools for data collection, analysis and dissemination. 

Satellite Earth Observation (EO) data can support countries to generate the information needed 
to monitor the SDG targets and basic agricultural statistics more efficiently by reducing the cost of 
collecting and analysing data. Land-based SDG indicators under FAO custodianship (including those 
under Goals 2, 6 and 15, and more specifically the physical component of such indicators) can be 
computed by analysing EO data1 and/or EO products2 that are developed and maintained by space 
agencies, research institutes and academia, and in most cases, freely available. However, the use 
of EO has its own challenges as its access, storage, preprocessing and analysis demand technical 
capabilities that can limit their uptake by countries.

FAO aims to tackle these issues through short- and medium-term projects of technical assistance to 
overcome these technical barriers, and support countries in using EO data to improve agricultural 
statistics in general, and in particular, to monitor SDGs. 

In the short term, FAO is establishing a collaboration with European Space Agency (ESA) and Catholic 
University of Louvain (UCL) to implement a user-friendly and open-source solution, namely the 
Sen2Agri3 tool box, to create national crop maps which can be used to generate some crop-related 
statistics.

FAO is committed to delivering specific in-country technical assistance in the uptake of the Sen2Agri 
tool as one of the cost-effective methods to improve the coverage, quality and timeliness of agricultural 
statistics, therefore enabling timely country SDG reporting. Furthermore, FAO is committed to 
building capacity on top of the Sen2Agri crop maps to extract crop acreage statistics for early crop 
yield assessment and forecasting.

The expected outcome of these planned projects, that were implemented in two pilot countries 
(Senegal and Uganda), is to ensure that the technical capacities for monitoring crops and generating 
agricultural statistics in these two countries are enhanced, including the generation of: 

●● crop maps 
●● crop area statistics 
●● crop acreage estimates
●● crop yields map and statistics.

1	 Earth Observation (EO) data refers to measurements from a range of satellites such as the Copernicus Sentinels or the Landsat missions. 
2	 EO product refers to classified remote sensing data (e.g. land cover map, crop map, water bodies etc.), biophysical parameters (e.g. Leaf Area Index, eva-

potranspiration) or derived indexes (e.g. vegetation and water indexes: Normalised Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI; 
Normalised Difference Water Index, NDWI etc).

3	 Sen2Agri open source toolbox for national crop monitoring: http://www.esa-sen2agri.org
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While crop maps, crop acreage estimates, crop area statistics and yield maps will be provided 
through the production line of Sen2Agri and further developed tools, this EO information will be 
integrated in the working environment of National Statistics Offices through the FAO and ESA joint 
implementation of the ongoing Sen4Stat project4. By utilising the results from these pilot countries, 
this project can be scaled up to include a larger number of countries, in particular those where the 
capacity to generate crop statistics is relatively low.  

FAO’s long term vision is to enable the National Statistics Offices (NSOs) to integrate the use of open 
EO data and tools (produced by space agencies, research institutes and academia) into their national 
statistics programme by validating the EO outputs using low cost in situ data collection mechanisms. 
This is expected to contribute to strengthening the NSO’s statistical reporting systems to produce 
accurate and timely data on SDG indicators as well as data related to agricultural statistics. To this 
end, the FAO and ESA are working towards establishing a long-term collaboration on the use of EO 
data from ESA for improving agricultural statistics and SDG monitoring.

In conclusion, the long-term vision of FAO is to use the EO data for three main applications: a) direct 
measurement of agricultural statistics; b) provision of subnational disaggregated estimates for some 
SDG indicators; and c) improvement of the statistical efficiency of field and household surveys. The 
following table describes the use of the EO data under the three categories described above for 
selected SDG indicators related to food and agriculture. 

SDG Indicator 
Number Indicator Direct Measure Disaggregation Survey Design

2.1.1 Hunger 4 4

2.1.2 Severity of food insecurity 4 4

2.3.1 Productivity of small-scale food producers 4 4

2.3.2 Income of small-scale food producers 4

2.4.1 Agricultural sustainability 4 4 4

5.a.1 Women’s ownership of agricultural land 4 4

5.a.2 Women’s equal rights to land ownership
4

6.4.1 Water use efficiency 4 4 4

6.4.2 Water stress
4 4 4

12.3.1 Global food losses
4 4

14.4.1 Fish stock sustainability

14.6.1 Illegal, unreported undregulated fishing

15.1.1 Forest area 4 4 4

15.2.1 Sustainable forest management 4 4 4

15.4.2 Mountain Green Cover 4 4 4

4	 Sen4Stat – EO for national agricultural statistics: https://www.esa-sen4stat.org
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Acronyms

EDORA: 	 European Development Opportunities in Rural Areas

ESPON: 	 European Spatial Planning Observation Network

ESU:  	 Economic Size Units

FAO: 	 Food and Agriculture Organization of the United Nations 

FNS: 	 Food and Nutrition Security 

FSS: 	 European Farm Structure Survey

GPS: 	 Global Positioning System

ha: 	 hectare

MPFC: 	 Meadows, Pasture and Forage Crops

NDVI: 	 Normalized Difference Vegetation Index

NUTS: 	 Nomenclature of Territorial Units for Statistics

OA: 	 Overall Accuracy

PA: 	 Producer’s Accuracy

R2: 	 Coefficient of determination

RF: 	 Random Forest Algorithm

RGB: 	 Red, Green, Blue

SALSA: 	 Small Farms, Small Food Business and Sustainable Food Security Project

SDGs: 	 Sustainable Development Goals

SGM: 	 Standard Gross Margin

UA: 	 User’s Accuracy

UAA: 	 Utilized Agricultural Area

 



	

This project has received funding from the European Union’s Horizon 2020 
Research and Innovation Programme under the grant agreement No. 677363

Stay Connected
www.salsa.uevora.pt/en/

www.fao.org/in-action/small-farms-businesses-sustainable-food-nutrition

Contacts: 	Research and Extension Unit, Office of Innovation, Food and Agriculture Organization 
	 of the United Nations (FAO) AGDR-Chief@fao.org 

	 Teresa Pinto-Correia, Universidade de Évora, Portugal mtpc@uevora.pt

C
ov

er
 p

ho
to

s:
 ©

 S
AL

SA
 

Th
e 

m
ap

s 
in

 th
is 

pu
bl

ic
ati

on
 a

re
 s

ty
liz

ed
 a

nd
 n

ot
 to

 s
ca

le
. T

he
y 

do
 n

ot
 re

fle
ct

 a
 p

os
iti

on
 b

y 
SA

LS
A 

on
 th

e 
le

ga
l s

ta
tu

s 
of

 a
ny

 c
ou

nt
ry

 o
r t

er
rit

or
y 

or
 th

e 
de

lim
ita

tio
n 

of
 a

ny
 fr

on
tie

rs
.This publication was realised with 

the technical support of

 
and with the collaboration of the University of Évora


